PARECER CNE/CES 1.362/2001 - HOMOLOGADO

Despacho do Ministro em 22/2/2002, publicado no Diário Oficial da União de 25/2/2002, Seção 1, p. 17.

MINISTÉRIO DA EDUCAÇÃO CONSELHO NACIONAL DE EDUCAÇÃO

	Nacional de Educação /	Câmara de Educação UF: DF
Superior		
ASSUNTO: Diretrizes Curriculares Nacionais dos Cursos de Engenharia		
RELATOR(A) : Carlos Alberto Serpa de Oliveira (Relator), Francisco César de Sá Barreto,		
Roberto Claudio Frota Bezerra		
PROCESSO(S) N°(S): 23001-000344/2001-01		
PARECER N°:	COLEGIADO	APROVADO EM:
CNE/CES 1362/2001	CES	12/12/2001

I – RELATÓRIO

1. Histórico

O desafio que se apresenta o ensino de engenharia no Brasil é um cenário mundial que demanda uso intensivo da ciência e tecnologia e exige profissionais altamente qualificados. O próprio conceito de qualificação profissional vem se alterando, com a presença cada vez maior de componentes associadas às capacidades de coordenar informações, interagir com pessoas, interpretar de maneira dinâmica a realidade. O novo engenheiro deve ser capaz de propor soluções que sejam não apenas tecnicamente corretas, ele deve ter a ambição de considerar os problemas em sua totalidade, em sua inserção numa cadeia de causas e efeitos de múltiplas dimensões. Não se adequar a esse cenário procurando formar profissionais com tal perfil significa atraso no processo de desenvolvimento. As IES no Brasil têm procurado, através de reformas periódicas de seus currículos, equacionar esses problemas. Entretanto essas reformas não têm sido inteiramente bem sucedidas, dentre outras razões, por privilegiarem a acumulação de conteúdos como garantia para a for mação de um bom profissional.

As tendências atuais vêm indicando na direção de cursos de graduação com estruturas flexíveis, permitindo que o futuro profissional a ser formado tenha opções de áreas de conhecimento e atuação, articulação permanente com o campo de atuação do profissional, base filosófica com enfoque na competência, abordagem pedagógica centrada no aluno, ênfase na síntese e na transdisciplinaridade, preocupação com a valorização do ser humano e preservação do meio ambiente, integração social e política do profissional, possibilidade de articulação direta com a pós-graduação e forte vinculação entre teoria e prática.

Nesta proposta de Diretrizes Curriculares, o antigo conceito de currículo, entendido como grade curricular que formaliza a estrutura de um curso de graduação, é substituído por um

conceito bem mais amplo, que pode ser traduzido pelo conjunto de experiências de aprendizado que o estudante incorpora durante o processo participativo de desenvolver um programa de estudos coerentemente integrado.

Define-se ainda Projeto Curricular como a formalização do currículo de determinado curso pela instituição em um dado momento.

Na nova definição de currículo, destacam-se três elementos fundamentais para o entendimento da proposta aqui apresentada. Em primeiro lugar, enfatiza-se o conjunto de experiências de aprendizado. Entende-se, portanto, que *Currículo* vai muito além das atividades convencionais de sala de aula e deve considerar atividades complementares, tais como iniciação científica e tecnológica, programas acadêmicos amplos, a exemplo do Programa de Treinamento Especial da CAPES (PET), programas de extensão universitária, visitas técnicas, eventos científicos, além de atividades culturais, políticas e sociais, dentre outras, desenvolvidas pelos alunos durante o curso de graduação. Essas atividades complementares visam ampliar os horizontes de uma formação profissional, proporcionando uma formação sociocultural mais abrangente.

Em segundo lugar, explicitando o conceito de processo participativo, entende-se que o aprendizado só se consolida se o estudante desempenhar um papel ativo de construir o seu próprio conhecimento e experiência, com orientação e participação do professor.

Finalmente, o conceito de programa de estudos coerentemente integrado se fundamenta na necessidade de facilitar a compreensão totalizante do conhecimento pelo estudante. Nesta proposta de Diretrizes Curriculares, abre-se a possibilidade de novas formas de estruturação dos cursos. Ao lado da tradicional estrutura de disciplinas organizadas através de grade curricular, abre-se a possibilidade da implantação de experiências inovadoras de organização curricular, como por exemplo, o sistema modular, as quais permitirão a renovação do sistema nacional de ensino.

II - VOTO DO (A) RELATOR (A)

Voto favoravelmente à aprovação das Diretrizes Curriculares Nacionais dos Cursos de Engenharia, bacharelado, na forma ora apresentada.

Brasília, 12 de dezembro de 2001

Conselheiro Carlos Alberto Serpa de Oliveira – Relator

Conselheiro Francisco César de Sá Barreto

Conselheiro Roberto Claudio Frota Bezerra

III - DECISÃO DA CÂMARA:

A Câmara de Educação Superior acompanha o Voto do Relator.

Sala das Sessões, 12 de dezembro de 2001.

Conselheiros Arthur Roquete de Macedo - Presidente

José Carlos Almeida da Silva - Vice-Presidente

DIRETRIZES CURRICULARES PARA OS CURSOS DE GRADUAÇÃO EM ENGENHARIA

Diretrizes Curriculares

1 Perfil dos Egressos

O perfil dos egressos de um curso de engenharia compreenderá uma sólida formação técnico científica e profissional geral que o capacite a absorver e desenvolver novas tecnologias, estimulando a sua atuação crítica e criativa na identificação e resolução de problemas, considerando seus aspectos políticos, econômicos, sociais, ambientais e culturais, com visão ética e humanística, em atendimento às demandas da sociedade.

2. Competências e Habilidades

Os Currículos dos Cursos de Engenharia deverão dar condições a seus egressos para adquirir competências e habilidades para:

- a) aplicar conhecimentos matemáticos, científicos, tecnológicos e instrumentais à engenharia;
- b) projetar e conduzir experimentos e interpretar resultados;
- c) conceber, projetar e analisar sistemas, produtos e processos;
- d) planejar, supervisionar, elaborar e coordenar projetos e serviços de engenharia;
- e) identificar, formular e resolver problemas de engenharia;
- f) desenvolver e/ou utilizar novas ferramentas e técnicas;
- g) supervisionar a operação e a manutenção de sistemas;
- h) avaliar criticamente a operação e a manutenção de sistemas;
- i) comunicar-se eficientemente nas formas escrita, oral e gráfica;
- i) atuar em equipes multidisciplinares;
- k) compreender e aplicar a ética e responsabilidade profissionais;
- 1) avaliar o impacto das atividades da engenharia no contexto social e ambiental;
- m) avaliar a viabilidade econômica de projetos de engenharia;
- n) assumir a postura de permanente busca de atualização profissional.

3. Estrutura do Curso

Cada curso de Engenharia deve possuir um projeto pedagógico que demonstre claramente como o conjunto das atividades previstas garantirá o perfil desejado de seu egresso e o desenvolvimento das competências e habilidades esperadas. Ênfase deve ser dada à necessidade

de se reduzir o tempo em sala de aula, favorecendo o trabalho individual e em grupo dos estudantes.

Deverão existir os trabalhos de síntese e integração dos conhecimentos adquiridos ao longo do curso, sendo que, pelo menos, um deles deverá se constituir em atividade obrigatória como requisito para a graduação.

Deverão também ser estimuladas atividades complementares, tais como trabalhos de iniciação científica, projetos multidisciplinares, visitas teóricas, trabalhos em equipe, desenvolvimento de protótipos, monitorias, participação em empresas juniores e outras atividades empreendedoras.

Nestas atividades procurar-se-á desenvolver posturas de cooperação, comunicação e liderança.

4. Conteúdos Curriculares

Todo o curso de Engenharia, independente de sua modalidade, deve possuir em seu currículo um <u>núcleo de conteúdos básicos</u>, um <u>núcleo de conteúdos profissionalizantes</u> e um <u>núcleo de conteúdos específicos</u> que caracterizem a modalidade.

O núcleo de conteúdos básicos, cerca de 30% da carga horária mínima, versará sobre os tópicos que se seguem:

- Metodologia Científica e Tecnológica;
- Comunicação e Expressão;
- Informática:
- Expressão Gráfica;
- Matemática;
- Física:
- Fenômenos de Transporte;
- Mecânica dos Sólidos;
- Eletricidade Aplicada;
- Química;
- Ciência e Tecnologia dos Materiais;
- Administração;
- Economia;
- Ciências do Ambiente;
- Humanidades, Ciências Sociais e Cidadania.

Nos conteúdos de Física, Química e Informática, é obrigatória a existência de atividades de laboratório. Nos demais conteúdos básicos, deverão ser previstas atividades práticas e de laboratórios, com enfoques e intensividade compatíveis com a modalidade pleiteada.

O <u>núcleo de conteúdos profissionalizantes</u>, cerca de 15% de carga horária mínima, versará sobre um subconjunto coerente dos tópicos abaixo discriminados, a ser definido pela IES:

- Algoritmos e Estruturas de Dados;
- Bioquímica;
- Ciência dos Materiais;
- Circuitos Elétricos;
- Circuitos Lógicos;
- Compiladores;
- Construção Civil;
- Controle de Sistemas Dinâmicos;
- Conversão de Energia;
- Eletromagnetismo;
- Eletrônica Analógica e Digital;
- Engenharia do Produto;
- Ergonomia e Segurança do Trabalho;
- Estratégia e Organização;
- Físico-química;
- Geoprocessamento;
- Geotecnia;
- Gerência de Produção;
- Gestão Ambiental;
- Gestão Econômica;
- Gestão de Tecnologia;
- Hidráulica, Hidrologia Aplicada e Saneamento Básico;
- Instrumentação;
- Máquinas de fluxo;
- Matemática discreta;
- Materiais de Construção Civil;
- Materiais de Construção Mecânica;

- Materiais Elétricos;
- Mecânica Aplicada;
- Métodos Numéricos;
- Microbiologia;
- Mineralogia e Tratamento de Minérios;
- Modelagem, Análise e Simulação de Sistemas;
- Operações Unitárias;
- Organização de computadores;
- Paradigmas de Programação;
- Pesquisa Operacional;
- Processos de Fabricação;
- Processos Químicos e Bioquímicos;
- Qualidade;
- Química Analítica;
- Química Orgânica;
- Reatores Químicos e Bioquímicos;
- Sistemas Estruturais e Teoria das Estruturas;
- Sistemas de Informação;
- Sistemas Mecânicos;
- Sistemas operacionais;
- Sistemas Térmicos;
- Tecnologia Mecânica;
- Telecomunicações;
- Termodinâmica Aplicada;
- Topografia e Geodésia;
- Transporte e Logística.

O <u>núcleo de conteúdos específicos</u> se constitui em extensões e aprofundamentos dos conteúdos do núcleo de conteúdos profissionalizantes, bem como de outros conteúdos destinados a caracterizar modalidades. Estes conteúdos, consubstanciando o restante da carga horária total, serão propostos exclusivamente pela IES. Constituem-se em conhecimentos científicos, tecnológicos e instrumentais necessários para a definição das modalidades de engenharia e devem garantir o desenvolvimento das competências e habilidades estabelecidas nestas diretrizes.

5. Estágios

Os estágios curriculares deverão ser atividades obrigatórias, com uma duração mínima de 160 horas. Os estágios curriculares serão obrigatoriamente supervisionados pela instituição de ensino, através de relatórios técnicos e de acompanhamento individualizado durante o período de realização da atividade.

É obrigatório o trabalho final de curso como atividade de síntese e integração de conhecimento.